Neural Network -
£~ Models for
.~ .7 Object

N

“¥. '} _Recognition

X

@
Credits
The template has been provided by slidesgo

Machine learning icons created by Ranah Pixel Studio - Flaticon
Vision icons created-by Freepik - Flatican

NIp icons-ereated by Freepik - Flaticon

Welcome to our project presentation of Neural
Networks for object recognition, presenting a fully
developed model trained by the CIFAR-10 image
dataset by Keras.

=
:// ARTIFICIAL INTELLIGENCE & OBJECT.RECOGNITION

Artificial Intelligence (Al) is “...the science and engineering of making intelligent machines...” (IBM, N.D.)
The Al market: $86.9 billion revenue in 2022. Estimated $407 billion revenue in 2027. (Haan, 2023)
Impact of most technologies on jobs expected to be a net positive over the next five years (WEF, 2023)

Al MAIN FIELDS

Natural Language
Machine Learning Computer Vision Processing

T

Giving the ability to Giving the ability to Giving the ability to
machines to ‘learn’ machines to ‘see’ machines to ‘understand’

<A
=|EE]

« First a bit of background on Artificial Intelligence
and object recognition.

. Alis the science of simulating human
intelligence in machines by programming them
to 'think’, 'learn' and 'perform’ tasks in a way that
humans would. Al is a discipline that uses
different technologies, such as machine
learning, computer vision and natural language
processing. Al-enabled systems can process big
data, and spot underlying patterns for important
decision making. So we can think of Al as "the
science and engineering of making intelligent

systems" (IBM, N.D.).

With Al being ubiquitous, the effects of Al on
global economies are worth mentioning. While Al
will replace jobs in areas such as agriculture
technologies, e-commerce, and digital trade
these job displacements are offset by job growth
in other areas like climate change and
environmental management solutions, big data,
and cyber security. According to the World
Economic Forum in this year’s report, this
offsetting results in a net positive over the next
five years (World Economic Forum, 2023).

So varying fields of Al present great interest, with
computer vision and object detection being the
main focus of many industries.

OBJECT RECOGNITION (EXAMPLE)

A BT BORT T

From retail, with self-checkout stores, to the
automobile industry with self-driving cars, the
division of Al which relates to allowing machines
to 'see’, is booming.

Here we see an example of how a machine
might separate different objects for detection,
this is where our focus will be today.

/] ®

L

g’ | THE TASK

e Ourtask

o Train a neural network for object recognition with the CIFAR-10 image dataset

The dataset

o . CIFAR-10 small images classification dataset by Keras

©_ 60,000 images

o 32*32 dimension RGB colour images making the shape of each image 32*32*3

o 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
Pre-split by Keras into 50,000 training images & 10,000 test images

. Because we have been tasked to harness the
power of discussed Al to train a neural network
for object recognition with the CIFAR-10 small
images classification dataset by Keras.

« This dataset consists of a total of 60,000 32*32
RGB colour images, evenly split over the 10
classes at 6,000 images each. The dataset has
been pre-split by Keras into 50,000 training
images, and 10,000 test images. We have been
challenged to create a model that accurately
classifies the test images into their respective
categories.

ARTIFICIAL NEURAL NETWORK (ANN) DESIGN

Train / validation / test split

Categorical Cross-Entropy loss function

As seen here in the top right corner, we created
a validation set from the training set by splitting
the training set of 50,000 images with the
“train_test_split()" function from the
“sklearn.model_selection” module into an 80/20
train/test split. We set ‘'random_state to 0 to
ensure that the splits are equal each time we
run the code.

The reason we used a validation set is to avoid
overfitting as a consequence of re-using the test
dataset whilst tuning the models architecture
and hyperparameters, for example by exploring
the optimal number of hidden layers or different

activation layers. The validation set also allowed
us to implement an “early stop” function, this
helped us determine when a model’s
performance started to decline - indicating
overfitting. This saves time and computational
power by not running any unnecessary epochs.
We then perform a final test on unseen data. Like
Russel & Norvig said, we use “Atest set to do a
final unbiased evaluation of the best model”.

Cross-Entropy is the most commonly used
choice for classification problems as it has been
found to work very well on these types of models.
Since we are dealing with categorical data, we
have applied the Categorical Cross-Entropy loss
function (Brownie, 2019; androidkt, 2023) - the
formula is displayed here in the middle of the
screen and measures the dissimilarity between
the true distribution and the estimated
distribution, a measure to establish confidence in
the classification model.

Furthermore the data is preprocessed to
normalise the pixel values to a value between 0
and 1 by dividing by the maximum RGB value of
255. This will aid the neural network in
processing the input images.

The output of the neural network will be a
probability distribution over the classes, and to
match this format, the labels are transformed to
one-hot encoding. This allows for a more direct
comparison between the neural network’s output
and the true labels.

ANN DESIGN

instantiate the model

model = Sequential()

input layer is created by Flatten

set size and structure of inputs

model.add(Flatten(input_shape=(32, 32, 3)))

set hidden layers

model.add(Dense(1000, activation='elu', kernel_initializer='he uniform', bias_initializer='truncated normal'))
model.add(Dropout(0.5))

model.add(Dense(1000, activation='elu', kernel_initializer='he uniform', bias_initializer='truncated normal'))
model.add(Dropout(0.5))

output layer with 10 neurons and softmax activation function

rule of thumb, number of neurons in output label is equal to number of classes/labels that you are predicting
model.add(Dense(10, activation='softmax'))

« In the final structure of our ANN there are 2
hidden layers each consisting of 1,000 neurons.
Both of these layers use ELU as the activation
function, "he_uniform™ as the kernel initialiser,
and ‘truncated _normal as the bias initialiser.

. We explored multiple activation functions for the
hidden layers such as Sigmoid, tanh, RELU,
and Softmax, but found that ELU showed the
best performance in our model. We did start out
with Relu, but then we came across ELU which
according to the literature has the potential for
higher accuracy than RELU, albeit more
computationally expensive (Himanshu, S., 2019;

DJ, 2020)

By looping through parameter permutations,
which will be discussed on the next slide, we
ascertained which activation function and kernels
could provide optimal model performance.

ANN METHODOLOGY (The model)

model = Sequential()

Sequential API Functional API

Input Input

—
-

Sequential and Functional APIs architecture (Analytics Vidhya, 2022)
\

As shown in the “ANN Design” section, the first
decision in our design was which model to use.
Generally speaking, Keras provides two different
APIs related to modelling, the “Sequential” API and
the “Functional” API. The “Functional” model is
primarily used in complex problems with multiple
input sources and output targets, with more than one
iInput sensor and output sensor needed, when layers
need to be shared or when “non-linear topology” is
involved. In contradiction, the “Sequential” model is
used in simpler problems with one input and output
tensor, one input source and output target, and uses
simple layer stacking while it is considered
appropriate for more problems (Keras, 2020).

Keras flattening (McLean, 2021)

Following the selection of the model, we started
building the required layers. The first layer built
resulted more from code requirements than from
analysis. While the images were loaded by code, the
output's shape differed from the required 1-
dimensional input required for the input tensor/layer.
By exploring the “input_shape variable”, we can
understand that the initial input had three
dimensions, with 32 elements in the first two
dimensions and three in the third, which, in our case,
represents images with RGB values of 0-1 float.
After flattening the inputs, the output is of one
dimension with 3,072 elements (having unrolled the
three dimensions of 32x32x3), which is acceptable

input for the layers-to-come. Providing the input as is
through a multidimensional input/tensor may be
technically possible. However, for such a volume of
images, this process would have needed to be more
convenient and not as computationally expensive
(EDUCBA, 2023).

set hidden layers

model.add(Dense (1000, activation='elu', kernel initializer: e
model.add(Dropout(0.5))

model.add(Dense(1000, activation='elu', kernel initializer e_|
model.add(Dropout(0.5))

Dense layer with and without dropout layer (Srivastava et al., 2014)

\
\

As the input layer/tensor is now in the required
shape and format, we then had to investigate the
required hidden layers. By specifying two of the
hidden layers as Dense (1st and 3rd line of code),
we instructed the code that every neuron of the layer
should receive input from all the neurons of the
previous layer. The Dense layer is also commonly
used for image classification, thus serving our
purpose (Dumane, 2020). In between the Dense
layers, we have also included a Dropout layer. A
dropout layer is not adding another layer in the
process per se (as seen in the second image) but
affects other hidden or visible layers, such as the
two Dense/hidden layers in our case. Dropout layers

prevent overfitting and provide the capability of
"combining exponentially many different neural
network architectures efficiently" (Srivastava et al.,
2014). In our case, the dropout rate is set to 0.5 float,
effectively dropping 1 out of 2 (or 50%) of the input
units.

units=unit,
kernel_initializer=weight,
bias_initializer=weight2,
kernel_regularizer=weightreg,
activity regularizer=weightreg2,
activation=activ
Iteration code snippet

50 selu zeros truncated_normal None

50 elu zeros he_uniform None

50 elu zeros he_normal None

50 softplus zeros zeros None

50 elu None he_uniform None

50 elu random_normal ones None

50 elu zeros variance_scaling None :

50 softplus None he_uniform None 0.497999996 1.47181857

Iteration results snippet

From all the layers already discussed, the most
interest is concentrated around the two Dense
layers. This is because of the number of arguments
available, the research performed, and how we
selected the used activation and initializers.
According to the available documentation, Dense
layers can accept arguments such as the units
(neurons), the activation function, kernel and bias
initializers, regularizers and constraints, and activity
regularizers. To find the best model for our data, we
worked with the test dataset with early stopping (as
explained earlier) on the number of epochs and a
set number of neurons, by iterating through the
different options. Our code iteration initially used four

different kernel and activity/output regularizers.
Considering that the regularizers apply a penalty, the
outcome signified that no penalty was needed (Keras,
2020). At the same time, we iterated through 12
different initializers (applying random weighting
through different methods) in the kernel and the bias.
Several initializers were proven to perform the best,
with marginal differences, such as the zeros kernel
initializer with truncated normal, he uniform or he
normal bias initializer. Activations are also an
essential part of the hidden layers as they are
essentially the data transformation functions of the
input data to output data (ProjectPro, 2022). Our
iteration tested nine different activation functions with
selu (Scaled Exponential Linear Unit), elu
(Exponential Linear Unit) and softmax (which applies
probability distribution) performing marginally better.
The argument exploration was one of the most critical
parts of the project, as it allowed us to narrow down
the available argument values to the most interesting
and better-performing ones.

e
METHODOLOGY (Output, Compilation, Fitting, Results)

model.add(Dense(1@, activation='softmax"'))

Output layer

initialise adam optimiser
model.compile(loss="'categorical_crossentropy’,
optimizer="Adamax",
metrics=['acc']) # can set to accuracy, precision, or recall

Compilation

train model

update model's weights each time to minimise the loss function

higher epochs can result in higher accuracy but more Likely to overfit

weights are not adjusted by performance results from validation set, it's purely a benchmark

model.fit(X_train, y_train, batch_size=128, epochs=200, callbacks=[early_stopping], validation_data=(X_val, y_val))

Fitting

Epoch 108/200
313/313 [] - 33s 106ms/step - loss: 1.8093 - acc: ©.6410 - val_loss: 1.2236 - val_acc: ©.5808

Final epoch for the selected model and related metrics

. As far as the model optimisation goes, after
defining the input and hidden layers, we also
had to define the output layer. The output layer
followed the previous convention of using a
Dense layer. The number of neurons was set to
10 to match the number of features in the
classification problem. The output layer applies
the softmax activation, as is the common
standard, since this puts predictions in an
interpretable probability format. After defining
the output layer, we had to define the model
compilation. The compilation instructions check
for errors in the previously defined code and

define the loss function, the activator and the
metrics. The loss function used has already been
explained in a previous slide, while for the
optimiser, we followed the same approach of
looping through different optimisers. Even though
the Adam optimiser is the standard used, we
discovered that Adamax, a variant of the Adam
optimiser, performed better for our problem.
Finally, on the accuracy argument, the accuracy
was set by using the argument "acc". This allows
the Keras library to handle the accuracy metrics
based on the given loss function.

Given that the used loss function was set to
sparse categorical accuracy, the accuracy
function used corresponds to the sparse
categorical accuracy, which calculates how often
predictions match integer labels (Keras, N.D.;
Keras, 2019). On the model fitting part of the
code, which tests how well the model performs in
generalized data, based on the provided training,
apart from the epochs used (for which we used
early stopping), we also found the optimal batch
size to be 128, to train the model on part of the
data, then performing a gradient update and
continuing with the next set/batch of data

through the different arguments were performed,
to find the best performing ones, the iterations
limited the available options of the best
parameter values. The iterations did not provide
the final architecture, which is a product of
manual trials on different numbers of layers used
and different argument parameters based on the
iteration results combined with discipline-specific
knowledge and research. This resulted in an
accuracy of 0.6410 and loss of 1.0093 in the
training data, while in the validation data the
model performed with an accuracy of 0.5808 and
loss of 1.2236. The loss, representing the
summarization of the errors, and in our model
has a high value, even though the accuracy
metric is above average, effectively representing
a 0.58 (58%) accuracy, with significant errors,
which may be explained by prediction outliers.

CONVOLUTIONAL NEURAL NETWORK (CNN)

We realised that we were unlikely to get our ANN model to a satisfactory accuracy

Convolutional Neural Networks (CNNs) are excellent at image classification (Sultana et
al, 2018)

CNNs are good for image classification because the convolutional layers extracts the
features (Wang et al, 2020)

CNN development was started in parallel to completing ANN development

« During development of our ANN model it
became clear that we were unlikely to be able to
get it anywhere near to the 80-90% accuracy
that were we looking for.

« Convolutional Neural Networks (CNNs) are
excellent for image classification problems
(Sultana et al, 2018). This is because the
convolutional layers extract the features, as
explained by Wang et al (2020), with each layer
extracting ever more complex features.

« After checking with the tutor that it was OK to
explore CNNs alongside ANNSs, we started a

parallel development to ensure that we were able
to get a model to an acceptable accuracy figure
for the project.

CNN INITIAL DESIGN APPROACH

Parameters from the “best for far” ANN were initially used:
o Optimiser:adam
o Activation: ReLU -the most popular activation function (Zhang et al, 2021), (Sharma et al, 2020)
Batch size: 128
Loss function: categorical_crossentropy - best for multiclass classification (Brownlee, 2021)
Kernel initialiser: default (glorot_uniform)
Bias initialiser: default (zeros)
Output Activation: softmax - used for multiclass classification(Sharma et al, 2020)
Number and configuration of layers was experimented with, changing a single parameterat a time
adjusting for positive/negative results:
Number of convolutional layers, number of filters and kernel size
Number of pooling layers and filter size
Number of fully connected layers and number of neurons
Batch size
o Stride size
Epochs determined with early stop function
Achieved accuracy of 70% but with quite high overfitting E—)

N\~ \

s \

. Since we were already quite a long way through
our ANN model development, we started the
CNN with the “best so far” parameters from the
ANN, which were:

. Adam for the optimiser, ReLU for the activation
function, which is also the most popular
activation function according to Zhang et al
(2021) and Charma et al (2020), and batch size
of 128.

« Categorical crossentropy loss function was used
because it is considered best for multiclass
classification problems according to Browlee

(2021).

Default kernel and bias initialisers of
glorot_uniform and zeros respectively were used
because we hadn’t selected optimal values from
the ANN yet. Output activation softmax was
used, as is standard for multiclass classification
(Sharma et al 2020).

With those parameters set we proceeded to
experiment by changing a single parameter at a
time, adjusting up or down depending the results.
The parameters changed were:

The number of convolutional layers and the
number of filters and the kernel size within each
layer.

The number of pooling layers and the filter size of
each pooling layer.

The number of neurons and layers in the fully
connected layers.

The batch size.
And the stride size.

We used the early stop function again to
determine the number of epochs.

With this approach we got to around 70%

on the bottom right.

_FINALISING THE CNN DESIGN

Added dropout following CNN seminar:
o Overfitting decreased significantly with small increase in accuracy
O Experimented with higher and lower values for optimal dropout value
Added padding following CNN seminar:
o Accuracy improved and it opened-up more kernel and pool filter sizes because “same” padding doesn’t reduce the
spatial dimensionality of the output of the convolutional layer
Tested optimiser, activation, kernel initialiser, and bias initialiser from the final ANN model:
O Optimiser: adamax
m Model improved so replaced adam with adamaxin final CNN model
O Activation:elu
m Model diminished so not used
o Kernel initialiser: HeUniform
B Model diminished so not used
O Biasinitialiser: TruncatedNormal
m |/ Model diminished so not used
After experimenting with square poolingfilters, we tried (3,2) which improved. We tried additional rectangles, but none
improved on (3,2)
Final model was tested after converting images to grayscale. The model diminished so RGB was used

N)z - N
\\‘// “ \

o
< \
NG AN

. Part-way through development the CNN
seminar introduced dropouts and padding. We
did a little more research and then incorporated
both features into our model with immediate
results.

« The dropout increased accuracy a little, but it
significantly reduced overfitting, meaning we
could push the models for longer to achieve
better results.

« When we introduced “same” padding it also
improved accuracy, but more significantly it
opened-up more options for kernel and filter

sizes because the convolutional layer was no
longer reducing the spacial dimensionality of the
output, which only started at 32x32 so didn’t take
long to get to 1x1.

We also discovered that the number of filters is
generally a power of two (Dertal, 2017), with the
number increasing with each layer due to the
increasing complexity of the feature maps, so we
started to adopt a 64, 128, 256 filters design.

With results significantly improved, and the ANN
model now finished, we applied any deltas from
the ANN model to the CNN model to see if it
could be improved even further.

We found that changing the optimiser from adam
to adamax improved the model, so we kept that
change.

The other parameters from the ANN model, being
elo activation, HeUniform kernal initialiser and
TruncatedNormal bias initialiser all diminished
the model, so they were not used.

We then tried a rectangular pooling filter of (3x2),
having previously only tested square filters.
Surprisingly, that improved the model, so we
tested other rectangular filters, but they all

diminished the model, so we kept the (3x2) filter.

Finally, once we had the best model that we
could get, we converted the images to greyscale
to see if that made any improvement. The model
diminished so we kept it at RGB.

CNN FINAL MODEL

Fully connected
Layer
800 neurons

Convolution layer Convolution layer Convolution layer
Activation: ReLU Pooling layer Activation: ReLU Pooling layer Activation: ReLU Pooling layer
Input layer Kernel: 3x3 Max pooling Kernel: 3x3 Max pooling Kernel: 3x3 Max pooling
32x32x3 Filters: 64 Filter: 3x2 Filters: 128 Filter: 3x2 Filters: 256 Filter: 2x2
RGB “same” padding Output: 15x15 “same” padding Output: 7X7 “game” padding Output: 3x3
Output: 32x32 Output: 15x15 Output: 7x7

Flattened

W O N, s WN

30% 30% 30%
dropout dropout dropout

Feature extraction

30%
dropout

. This is a diagrammatic representation of our
final model.

. It has:
o 32x32x3 RGB input

. 3 convolutional layers with (3x3) kernels and
filters increasing from 64 through 128 to 256

. 3 pooling layers with filter size (3,2), (3,2), (2,2).
The final filter size of (2,2) was to avoid the final
output being 1x1.

« Afully connected single layer with 800 neurons
« Adropout of 30% after every pooling layer and

1 Output layer

\ 10 neurons
S

airplane
automobile

» bird

(-4

after the fully connected layer
« Abatch size of 128
« And RelLU activation
« And not shown on the diagram, we had:
« Adamax optimiser

« And Default kernel initialiser of glorot_uniform and
bias initialiser of zeros

CNN FINAL MODEL

model=tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), strides=(1,1), padding="same', activation='relu', input_shape=(32, 32, 3)),
tf.keras.layers.MaxPooling20(3,2),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Conv2D(128, (3,3), strides=(1,1), padding='same', activation="relu'),
tf.keras.layers.MaxPooling20(3,2),
tf.keras.layers.Dropout(@.3),
tf.keras.layers.Conv2D(256, (3,3), strides=(1,1), padding='same', activation='relu’),
tf.keras.layers.MaxPo
tf.keras.layers.Dropout(0.3),
tf.keras.layers.F (
tf.keras.layers.Dens @, activation='relu'),
tf.keras.layers. (0.3),
tf.keras.layers.Dense(10, activation='softmax")

model.compile(loss="categorical_crossentropy"’,
optimizer="adamax',
metrics=["acc'])

. Here are some code snippets of the final model
to show how it was built.

. We can see on the right that the size going into
the flatten layer is 3x3 as a result of the final
pooling filter being 2x2 as explained before.

« So how did this model perform? Let’s find out on
the next slide.

" Validation set

Loss:
Accuracy:

Test set
Loss:
Accuracy:

CNN MODEL ACCURACY

3 61 109 43 38 1
“ .

4
woow s
7 4 Ly 7

11

82.44%

0.5533
82.08%

The confusion matrix of the test set shows good predictions across all classes. Cats
performed the worst, which was true of all models tested (both ANN and CNN), with)
The most common mistake being prediction of a dog.

We were really pleased to get an accuracy
score of 82.44% against the validation set after
39 epochs, with a loss of 0.53.

The loss and accuracy charts show a clear
levelling-off but no marked downturn in
performance.

Most importantly, when the model was finally
tested on the unseen test data set it achieved
an accuracy score of 82.08%, so it was
performing very consistently.

The confusion matrix of the test results shows
how well it matched each class individually. We

can see that most classes scored very well, with
ship being the best. The worst by some margin
was cat, which was incorrectly matched with dog
more than any other class.

. Overall, we felt it was a very good result.

% -
Loss function

SUMMARY OF BOTH FINAL MODELS

categorical_crossentropy

Loss function

Optimiser

categorical_crossentropy

adamax

Convolutional layers

3

Filters per conv layer

64, 128, 256

Optimiser

adamax

Kernel size

Stride

3x3

1x1

Hidden layers

2
1,000 neurons per layer

Passing

same

Activation function

relu

- Neurons per hidden layer

1,000

Kernel initialiser

glorot_uniform

Activation function

elu

Bias initialiser

Zeros

Kernel initialiser

he_uniform

Dropout

0.5 after every hidden layer

Bias initialiser

truncated_normal

Fully connected layers

1

Dropout

0.5 after every hidden layer

Neurons in FC layer

800

108

Epochs

39

Loss: 1.2305
Accuracy: 0.5808 (58.08%)

\
N

Validation results

Loss: 0.5326
Accuracy: 0.8244 (82.44%)

Testresults

Loss: 0.5533
Accuracy: 0.8205 (82.05%)

Before we conclude, this is a summary of the final
ANN and CNN models with their results. We can
see, as already explained, the validation accuracy
of ANN was 58% after 108 epochs and the
validation accuracy of the CNN was 82% after 39
epochs, with test accuracy also of 82%

CONCLUSIONS

Happy with the final performance of our ANN and CNN models
We learned a huge amount about building neural networks, including

o The need to tune hyperparameters; optimiser, activation function, loss function, kernel initialiser, bias
initialiser and batch size

> The impact of increasing neurons and layers
The impact of dropout
The structure and benefits of convolutional layers and pooling layers in a CNN

Increasing epochs increases accuracy through backpropagation, but all models eventually start to
overfit, so the early stop function helps to identify the best time to stop

How:easy it is to build machine learning models with the Keras library in Python
We worked very well as a team. We were collaborative, divided the work fairly, and communicated regularly.
Future improvement: identification of best practice hyperparameters.

. As ateam we were very happy with the final
results of our ANN and CNN models. We got the
accuracy as high as we were able to in the time
given.

. Most importantly we all learned a lot about
building neural networks. The learning included:

« The functions of the hyperparameters and why
tuning is key to model performance.

. That increasing neurons and layers can increase
accuracy but can also lead to overfitting, and it
increases computational demands.

. That dropout can be used to mitigate overfitting

and increase accuracy.

We learned the structure of convolutional layers
and pooling layers in CNNs and how to optimise
them for image classification.

That increasing epochs increases accuracy
through backpropagation, but too many epochs
leads to overfitting so the early stop function is
useful to prevent that.

And we learned that it's actually quite easy to
build machine learning models in Python using
the Keras library.

We felt that we worked very well as a team. We
collaborated well, we were mature in how we
divided the work, and we kept in regular contact.

If there was one area that could’ve been
improved, it was identification of a best practice
set of parameters to start building the model
from. We did search and found some pointers,
such as RelLU being good for multiclass
classification, but most literature suggested that
trial and error is the best way to find an optimal
model, which is what we did. We feel that with
more research we might have been able to find a
more specific set of starting guidelines though.

REFERENCES

Brownlee, J. (2021) How to Choose an Activation Function for Deep Learning. Available from: https://machinelearningmastery.com/choose-an-activation-
function-for-deep-learning/ [Accessed 23 June 2023].

Dertat, A. (2017) Applied Deep Learning - Part 4: Convolutional Neural Networks. Available from: https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 [Accessed 23 June 2023].

EDUCBA (2023) Keras Flatten. Available from: https://www.educba.com/keras-flatten/ [Accessed on 8 June 2023].

D) (2020) Definitive Guide of Activationsin Machine Learning. Available from: https://towardsdatascience.com/manual-of-activations-in-dee
30658167ffch [Accessed 1 July 2023].

Dumane, G. (2020) Introduction to Convolutional Neural Network (CNN) using Tensorflow. Available from: https:/ /towardsdatascience.com/introduction-
to-convolutional-neural-network-cnn-de73f69c5b83 [Accessed 8 July 2023].

Haan, K. (2023) 24 Top Al Statistics And Trends In 2023. Available from: https:/ /www.forbes.com/advisor/business/ai-statistics/ [Accessed 2 July 2023].

Himanshu, S. Activation Functions: Sigmoid, tanh, ReLU, Leaky RelLU, PReLU, ELU, Threshold ReLU and Softmax basics for Neural Networks and Deep
Learning. Available from: https://himanshuxd.medium.com/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-
deep-8d9c70eed9tett:~:text=EL U%20have%20been%20shown%20to,slowly%20whereas%20Rel U%20smooths%20sharply [Accessed 1July 2023].

IBM (N.D.) What is artificial intelligence? Available from: https://www.ibm.com/topics/artificial-intelligence [Accessed 2 July 2023].
Keras (2020a) The Sequential model. Available from: https://keras.io/guides/sequential_model/ [Accessed 8 July 2023].
Keras (2020b) Layer weight regularizers. Available from: https://keras.io/api/layers/regularizers/ [Access 8 July 2023].

Keras (2022) Training-related part of keras engine. Available from: https://github.com/keras-
team/keras/blob/68dc181a5e34d1f20edabe531176b3bfb50001f9/ keras/engine/training.py#L375 [Accessed 9 July 2023].

Keras (N.D:) CIFAR10'small images classification dataset. Available from: https://keras.io/api/datasets/cifar10/ [Accessed 23 June].

Finally, these were the references used within this
presentation.

REFERENCES

Keras (N.D.) Accuracy metrics. Available from: https://keras.io/api/metrics/accuracy_metrics/#sparsecategoricalaccuracy-class [Access 9 July 2023].

Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny Images. Available from: https:
TR.pdf [Accessed 23 June 2023].

Pramoditha, R. (2022) Size, Epochs and Training Steps in a Neural Network. Available from: https://medium.com/data-science-365/all-you-need-to-know-
about-batch-size-epochs-and-training-steps-in-a-neural-network-f592e12cdb0a [Accessed 9 July 2023]

ProjectPro (2022) What is the use of activation functionsin keras ? Available from: https://www.projectpro.io/recipes/what-is-use-of-activation-functions-
keras [Accessed 8 July 2023].

Russell, S. & Norvig, P. (2021) Artificial Intelligence: A Modern Approach. 4th ed. Harlow: Pearson Education Limited.

Sharma, S., Sharma, S. & Athaiya, A. (2020) Activation functionsin neural networks. International Journal of Engineering Applied Sciences and Technology,
4(12): 310-316.

Srivastana, N., Hointon, G., Krizhevsky, A., Sutskever, |. & Salakhutdinov, R. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research 15(1): 1929-1958.

Sultana, F., Sufian, A. & Dutta, P. (2018) ‘Advancements in image classification using convolutional neural network’, 2018 Fourth International Conference on
Research in Computational Intelligence and Communication Networks (ICRCICN). Kolkata, India, 22-23 November. IEEE. 122-129

Wang, Z)., Turko, R, Shaikh, 0., Park, H., Das, N., Hohman, F., Kahng, M. & Chau, D.H.P. (2020) CNN explainer: learning convolutional neural networks with
interactive visualization. IEEE Transactions on Visualization and Computer Graphics, 27(2): 1396-1406.

World Economic Forum (2023) The Future of Jobs Report 2023. Available from: https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf [Accessed 2
July 2023].

Zhang, X, Chang, D., Qi, W. & Zhan, Z. (2021) A Study on different functionalities and performances among different activation functionsacross different
ANNs for image classification. Journal of Physics: Conference Series, Vol. 1732(1): 1-6.

. And here.
. Thank you.

